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CALCULATION OF THREE-DIMENSIONAL (3-D) INTERNAL FLOW BY
MEANSOF THE VELOCITY-VORTICITY FORMULATION ON A
STAGGERED GRID

Paul M. Stremel

Ames Research Center

SUMMARY

A method has been devel oped to accurately compute the viscous flow in three-dimensional (3-D)
enclosures. This method is the 3-D extension of atwo-dimensional (2-D) method developed for the
calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to
accurately reproduce experimental results. Asin the 2-D method, the 3-D method provides for the
non-iterative solution of the incompressible Navier—Stokes equations by means of a fully coupled
implicit technique. The solution is calculated on abody fitted computational mesh incorporating a
staggered grid methodology. In the staggered grid method, the three components of vorticity are
defined at the centers of the computational cell sides, while the velocity components are defined as
normal vectors at the centers of the computational cell faces. The staggered grid orientation provides
for the accurate definition of the vorticity components at the vorticity locations, the divergence of
vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solutionis
obtained by utilizing afractional step solution technique in the three coordinate directions. The
boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution.
The method provides for the non-iterative solution of the flow field and satisfies the conservation of
mass and divergence of vorticity to machine zero at each time step. To test the method, the calcula-
tion of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow
in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability
of the method to predict the flow in arbitrary cavities, results will be shown for both cubic and
curved cavities.

INTRODUCTION

The numerical prediction of vortex-dominated flow is paramount to the understanding of the
flow about aircraft configurations. Thisis especialy important to the design analysis of rotorcraft
when considering download, the force exerted on the vehicle due to the rotor-wake interaction with
the fuselage components. Download limits helicopter performance in hover and is a significant
problem in the design of tilt-rotor configurations, where the lifting wing isimmersed in the rotor
wake. Because the download caused by the rotor wake severely limits the hover performance of tilt-
rotor configurations, a method for accurately predicting tilt-rotor download would provide for the
design of configurations with improved hover performance.



A two-dimensional (2-D) method has previously been developed to calculate the flow about bluff
bodies, reference 1. Results have also been obtained for airfoils with and without a deflected flap at
—90 deg incidence, reference 2. Additionally, the effect of Reynolds number and turbulence have
been computed for the XV-15 wing airfoil with and without a deflected flap, reference 3. The results
of reference 3 indicate that the flow field solution is highly Reynolds number and turbulence depen-
dent. Excellent correlation between prediction and test were obtained when matching the test
Reynolds number and incorporating the Baldwin/Barth turbulence model, reference 4. This correla-
tion provides confidence in using the current method as atool to further investigate the reduction of
drag on airfoils at —90 deg incidence.

The validated 2-D computational method has al so been applied to calculate the influence of
upper- or lower- surface fences on airfoil aerodynamics, reference 5. In particular, the flow about an
XV-15 airfoil with a 30 percent trailing edge flap deflected 60 deg at —90 deg incidence was con-
sidered. The flow is calculated for a Reynolds number of one million while modeling turbulent flow.
The results of that investigation indicate that significant reductions in drag are obtained with the
inclusion of fences. In particular, a 35 percent drag reduction, with respect to the basic airfoil value,
was achieved for alower-surface fence located at the airfoil leading edge.

The ability of the 2-D method to accurately compute the flow about a complex geometry normal
to the free-stream flow and the direct extension of the method to 3-D analysis are the basis for this
paper. In order to predict download, a method is required that can, not only, compute the flow about
complex 3-D bodies, but also can accurately predict the wing-base pressure, which has beeniillusive.
The 3-D extension of the 2-D analysis promises to be such a method.

Prior to solving the 3-D externa flow problem a simpler problem is addressed to validate the
governing equations and the solution technique. The flow in adriven cavity is considered to test the
method. The development of the method is presented in the next section followed by the application
of the method to the driven cavity problem.

PROBLEM FORMULATION

The flow field is modeled by the velocity/vorticity form of the unsteady, incompressible Navier—
Stokes equations. The nondimensional governing equationsin Cartesian coordinates are written for
the continuity equation,
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and for the vorticity transport equation,
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with 02=092()/0 x 2+ 02()/dy2 + 02()/dz2, where (x,y,z) are the Cartesian coordinates, Reisthe
Reynolds number, and t isthe time. The vorticity, w, isdefined by
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The nondimensional variables are written
x=x'Ilhy=y/ll,z=211
u=u/U,v=Vv /Uy ,w=w/U,
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where

u, v, and w are the Cartesian components of the velocity, and

I reference length

Re = Reynoldsnumber based on |
Us = free-stream velocity
v = kinematic viscosity

When the Cartesian equations are transformed into generalized-orthogonal-curvalinear coordi -
nates, the governing equations become as follows (see ref. 6 for details).

For the continuity equation,
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where (€ 1, 2, 3) are the transformed coordinates, u, U,, and u; are the orthogonal velocity compo-
nents in the transformed coordinates, and h, h,, and h, are the vector lengths,
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The vorticity transport equation, equation 2, can be rewritten as:
oy +Ue Ddo- @« 00 = 020/ Re ©6)

Thisform offers some unique issues regarding the dot product on the left-hand side and the
Laplacian operator on the right-hand side of the equation. Because both the gradient and the
L aplacian operator act on a vector quantity, the dependence of the vector components and the unit
vectors must be considered. The expression for G« O becomes:
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Where, 0( ) =
The expression for the Laplacian of the vorticity vector on the right-hand side of equation 6 is
extremely long and can also be found in Appendix 1.

The boundary conditions for the transformed governing equations at the enclosure surface are
calculated from the no-dip condition as

U=l =Uu3=0 ()

except at the upper surface of the enclosure at which the velocity is specified. The surface vorticity is
calculated from equation 5.



Theflow is started impulsively. Therefore, at t = 0, the velocity on the upper surface of the
enclosure is set to the prescribed boundary condition and the velocity everywhere inside the enclo-
sureis set equal to zero. The vorticity on the upper surface of the enclosure is calculated from
equation 5 and is set equal to zero everywhere else in the enclosure. The surface vorticity is calcu-
lated implicitly as part of the solution after the impulsive start. The computation is advanced until a
desired time has been reached or until the flow has demonstrated stable periodic flow within the
enclosure.

NUMERICAL METHOD

The solution is obtained by solving the finite-difference representations of the governing equa-
tions on a computational mesh. The grid is body-fitted to the interior of the 3-D enclosure.

In the staggered-grid method, the flow-field variables are not defined at the mesh nodes only.
Rather, the components of vorticity are defined at the mid-points of the mesh cell sides, and the
orthogonal flow-field velocity components are defined at the centers of the mesh cell faces. The vor-
ticity and velocity components on the staggered grid are depicted in figure 1. The staggered-grid ori-
entation of the variables provides for the conservation of vorticity at the mesh nodes and the solution
of the continuity equation at the mesh cell centroids. The vorticity and flow-field velocities are cal -
culated by afully coupled implicit technique on the staggered mesh. The coupled method solves for
the vorticity and velocity components by means of a block-tridiagonal inversion for fractional steps.
A representation of the fractional step method is presented in Appendix 2. Each fractional step repre-
sents a computational sweep in one of the coordinate directions. These computational sweeps are
depicted in figures 2—4.

In figure 2, the computational sweep for coordinate 7 is shown. The governing equations for the
vorticity and velocity components are selected to take into account the spatial derivativesin 1. With
thisin mind, the conservation of vorticity is solved for w1. The vorticity components w» and w3 are
solved using the second and third components of the vorticity transport equation, equation 6. The
continuity equation, equation 4, is solved for u1, and the velocity components u, and uz are solved
from the third and second components of vorticity, respectively, in equation 5. This alows for the &1
derivatives of uy and uz to appear in the governing equation for each velocity component. Then
for up,
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In figure 3, the computational sweep for coordinate &2 is shown. The governing equations for the
vorticity and velocity components are selected to take into account the spatial derivativesin &2. Now,
the conservation of vorticity is solved for wp. The vorticity components w1, and w3 are solved using
the first and third components of the vorticity transport equation, equation 6. The continuity equa-
tion, equation 4, is solved for up, and the velocity components u1 and ug are solved from the third
and first components of vorticity, respectively, in equation 5. This allows for the & » derivatives of uq
and ug to appear in the governing equation for each velocity component. Then for ug,
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In figure 4, the computational sweep for coordinate 3 is shown. The governing equations for the
vorticity and velocity components are selected to take into account the spatial derivativesin &3. Now,
the conservation of vorticity is solved for w3. The vorticity components w; and w» are solved using
the first and second components of the vorticity transport equation, equation 6. The continuity equa-
tion, equation 4, is solved for uz, and the velocity components u1 and up are solved from the second
and first components of vorticity, respectively, in equation 5. This allows for the & » derivatives of uq
and ug to appear in the governing equation for each velocity component. Then for ug,
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The boundary conditions are calculated implicitly as part of the solution. After the inversion of
these block-tridiagonal systems, the solution for the present time-step is obtained. The solution is not
iterated and the continuity equation is satisfied to machine zero. The solution is then advanced by
updating the flow-field variables and solving the flow for the next time-step. The solution istermi-
nated at a desired time or after sufficient time has elapsed for demonstration of the flow-field
periodicity.



RESULTS

In order to test the method, the solution to the driven cavity problem was computed. All solutions
were computed for a Reynolds number of 100. This geometry was considered to test the methodol-
ogy and not to analyze the flow of driven cavities. The current formulation provides for the solution
of 3-D, incompressible flow for arbitrary geometries and not constrained to Cartesian coordinates.
The driven cavity problem is applied for a cubic cavity with constant coordinate spacing and with a
cosine spacing, which clusters the grid lines at the boundaries. The results are compared to those
computed in reference 8 for a cubic cavity of constant grid spacing in Cartesian coordinates. A
curved cavity is also considered, again with a constant coordinate spacing and a cosine spacing for
the grid coordinates. The cross-flow geometry for the four grids considered are shown in figures 5-8.
The 3-D grids are constructed by stacking the cross-flow geometry. The velocity of the upper surface
of the cavity is specified and held constant. The solution is started impulsively from rest and is con-
tinued until a steady solution is reached.

Cubic Cavity — Constant Grid Spacing

The driven cavity flow for the geometry of figure 5 is computed. For this solution, X is synony-
mouswith &1, y with &, and z with &3. The upper plate, the x-y plane at maximum z, isheld at a
constant velocity, U, = 1.0. The vorticity contours at the mid-plane locations are shown in figure 9.
The &1 vorticity, shown in figure 9(a), demonstrates the symmetric nature of the flow field with
opposite vortices at the center of the plane and flow up thewallsaty =0andy = 1.0. Additionally,
secondary vortices form on the bottom of the cavity and on the upper plate. The &> vorticity, shown
in figure 9(b), develops similar to the vorticity for a2-D solution of the driven cavity problem. The
&3 vorticity, shown in figure 9(c), demonstrates the symmetric nature of the cavity flow with sec-
ondary vortices on the upstream wall. The vorticity contours of figure 9 are similar to the vorticity
contours presented in reference 8.

Cubic Cavity — Cosine Grid Spacing

The driven cavity flow for the geometry of figure 6 is computed. Thisis similar to the previous
solution. However with the increased grid resolution at the wall, additional flow featuresin the form
of secondary vortices are resolved. Here again, X is synonymous with § 1, y with & 5, and z with &3 and
the upper plateis held at a constant velocity, U, = 1.0. The vorticity contours at the mid-plane loca
tions are shown in figure 10. The &1 vorticity, shown in figure 10(a), demonstrates the symmetric
nature of the flow field with opposite vortices at the center of the plane and flow up the walls at
y =0andy = 1.0 and the enhanced flow features, such as, secondary vortices on the bottom of the
cavity and on the upper plate. The & vorticity, shown in figure 10(b), develops similar to the
vorticity in the 2-D solution of the driven cavity problem and the previous vorticity shownin
figure 9(b). Vorticesin the lower corners of the cavity are clearly predicted. The 3 vorticity, shown
in figure 10(c), demonstrates the symmetric nature of the cavity flow with secondary vortices on the
upstream and downstream wall. The vorticity contoursin figure 10 are similar to those of figure 9
and the vorticity contours presented in reference 8.
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Curved Cavity — Constant Grid Spacing

The driven cavity flow for the geometry of figure 7 is computed. For this solution, r, or radius, is
synonymous with &1, y with &, and 6 with 3. The upper plate, the x-y plane at maximum z, is held
at a constant velocity, U = 1.0, seefigure 7. The vorticity contours at the mid-plane locations are
shown in figure 11. The &1 vorticity, shown in figure 11(a), again demonstrates the symmetric nature
of the flow field with opposite vortices at the center of the plane and flow up thewallsat y = 0 and
y = 1.0. Secondary vortices shown for the cubic cavity, figure 9(a), are not present here owing to the
curvature and increased height of the cavity, both of which tend to stagnate the flow at the bottom of
the cavity. The &2 vorticity, shown in figure 11(b), develops similarly to the vorticity shown in
figure 9(b) for the cubic cavity. However, the vorticity develops further down the downstream wall
due to the curvature of the cavity. The & 3 vorticity, shown in figure 11(c), demonstrates the symmet-
ric nature of the cavity flow with secondary vortices on the upstream wall.

Curved Cavity — Cosine Grid Spacing

The driven cavity flow for the geometry of figure 8 is computed. Herer, or radius, is synony -
mous with & 1, y with &, and 8 with 3. The upper plate, the x-y plane at maximum z, isheld at a
constant velocity, U, = 1.0. The vorticity contours at the mid-plane locations are shown in figure 12.
The &1 vorticity, shown in figure 12(a), again demonstrates the symmetric nature of the flow field
with opposite vortices at the center of the plane and flow up thewallsaty =0andy = 1.0. The sec-
ondary vortex structure shown on the upper plate is better defined, when compared to that of the
constant grid spacing, figure 11(a). The &2 vorticity, shown in figure 12(b), develops similar to the
vorticity shown in figure 11(b). However, corner vortices can be seen in the bottom of the cavity and
increased rollup of the primary vortex in the center of the cavity. The 3 vorticity, shown in
figure 12(c), demonstrates the symmetric nature of the cavity flow with secondary vortices on the
upstream and downstream walls.

CONCLUSIONS

A method has been devel oped to calculate accurately the viscous flow in 3-D enclosures. The
method provides for the non-iterative solution of the incompressible Navier—Stokes equations by
means of afully coupled implicit technique. To demonstrate the method, the calculation of simple
driven cavity flows has been considered. The driven cavity flow is defined as the flow in an enclo-
sure driven by a moving upper plate at the top of the enclosure. The intent was not to present a study
of cavity flows, but to determine the ability of the method to predict arbitrary internal 3-D flow.
Therefore, results were shown for both cubic and curved cavities with constant and varying mesh

spacing.

The predicted vorticity contours for a cubic cavity with constant mesh spacing were in close
agreement with the contours shown in reference 8. The method predicted the emergence of the pri-
mary vortices, aswell as, secondary vortices. Similar results were shown for a cubic cavity with a



cosine spacing for the grid points. The cosine spacing of the grid points concentrates the mesh points
near the boundaries. With the cosine spacing, the primary and secondary vortices were enhanced.

The predicted vorticity contours for a curved cavity with constant mesh spacing were similar to
those for the cubic cavity, and were again enhanced when the solution was computed on a curved
cavity with a cosine distribution for the grid points.

The comparison of the present results with other computations for the cubic cavity flow and the
comparison of the cubic cavity flow with the curved cavity flow provide credibility to the methodol-
ogy. Considerable work is required to extend the method to external flows, to incorporate turbulence
models and to apply the method to realistic problems.



APPENDIX 1

This Appendix presents the development of the dot-product, divergence, and LaPlacian operator of a
vector quantity and are integral to the development of the generalized governing equations in three-
dimensional (3-D) space.

The expressionsin this Appendix are written for a general vector quantity,
F = Fid ++F,8, + F33,
The dot product of a vector with the gradient of another vector is written,
fis OF = fie O(F.8, + F1d, + Fads)
or,
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The general expressions for the dot product and the gradient are, respectively,
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the dot product of the unit vectors become,
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Then the dot product becomes,
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The Laplacian of avector is asfollows.

The Laplacian of ascalar iswritten,
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For which the Laplacian for avector quantity is written,
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After evaluation of the above terms using the product rule, incorporating the derivatives of the unit
vectors presented above and considerable rearranging, the Laplacian of avector quantity iswritten,
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APPENDIX 2

This Appendix presents the development of the fractional-step method of reference 7 for three-
dimensions. Consider the Cartesian form of the vorticity transport equation in three dimensions,
without considering the vortex-stretching terms. The equation is written,
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The fractiona step method iswritten , for the three fractional steps, as
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Figure 1. Schematic for staggered-grid formulation.



Figure 2. Schematic for staggered-grid formulation, & ; solution sweep.



Figure 3. Schematic for staggered-grid formulation, & , solution sweep.
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Figure 4. Schematic for staggered-grid formulation, & 5 solution sweep.
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Figure 5. Geometry for cubic cavity, constant spacing, 17 x 17 x 17.
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Figure 6. Geometry for cubic cavity, cosine spacing, 17 x 17 x 17.
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Figure 7. Geometry for curved cavity, constant spacing, 17 x 17 x 17.
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Figure 8. Geometry for curved cavity, cosine spacing, 17 x 17 x 17.
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Figure 9. Vorticity contours for cubic cavity, constant spacing, mid-plane locations, 17 x 17 x 17.
a) &, vorticity contours, b) &, vorticity contours, c) & 5 vorticity contours.
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Figure 10. Vorticity contours for cubic cavity, cosine spacing, mid-plane locations,
17 x 17 x 17. ) & 1 vorticity contours, b) &, vorticity contours, c) & 5 vorticity contours.
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Figure 11. Vorticity contours for curved cavity, constant spacing, mid-plane locations,

17 x 17 x 17. ) & 1 vorticity contours, b) &, vorticity contours, c) & 5 vorticity contours.

2.0



0.0

g

0.0

0.5

1.0 15

2.0

2.0 0.0
(b)

0.5 1.0 15

15

y 1.0

0.5

0.0

0.0
(©

0.5

15 2.0

Figure 12. Vorticity contours for curved cavity, cosine spacing, mid-plane locations,
17 x 17 x 17. @) & 1 vorticity contours, b) &, vorticity contours, c) &  vorticity contours.
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